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This paper focuses on the acceleration of the numerical linear algebra for solving large nonlinear electroquasistatic problems in time 

domain as they occur in high-voltage applications utilizing nonlinear electric field stress grading materials. An algebraic multigrid 

(AMG) scheme is executed on multiple GPUs as a preconditioner for the conjugate gradients method. The speedup is further increased 

by exploiting the fact that repeated solutions of similar shaped systems must be obtained in the Newton-Raphson iterations of the 

implicit time-stepping scheme. A tailored update algorithm for the AMG preconditioner is proposed that clearly reduces the 

communication between GPUs and host. 
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I. INTRODUCTION 

HE FINITE-ELEMENT-BASED SIMULATION of electro-

magnetic fields is an established technique for the design 

and optimization of devices such as high-voltage insulators. 

To further improve the accuracy, large scale 3D models are 

considered where the simulation takes into account both large 

homogeneous regions and small geometric details. For solving 

these models in acceptable time a fast solution of the resulting 

large scale discrete problems is of high importance. 

II. PROBLEM FORMULATION 

 For the low frequency applications mentioned above the 

electro-quasistatic (EQS) approximation of Maxwell's 

equations is sufficiently accurate. It can be formulated as the 

following partial differential equation 
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where   is the scalar electrical potential,   is the electrical 

permittivity,   is the electrical conductivity with adequate 

initial and boundary conditions. The system can be discretized 

in space using Finite Elements (FE) and in time using for 

example Singly Diagonal Implicit Rung-Kutta (SDIRK) 

methods. The nonlinearity is taken into account by using a 

nonlinear solver in each time-step, e.g. a Newton-Raphson 

scheme. As a result, many sparse linear algebraic systems of 

equations have to be solved. For this the conjugate gradient 

method is applicable which is typically accelerated by a  

preconditioner, e.g. an algebraic multigrid method scheme 

(AMG-CG) [1]. 

III. SOLVING ELECTROMAGNETIC PROBLEMS ON GPUS 

When computing large FE problems most of the time is 

spend solving the linear systems. Unfortunately, this operation 

is carried out in each time step and within each nonlinear 

iteration. AMG-CG can be divided into two parts: in the setup-

phase the preconditioner is initiated. In case of AMG this 

corresponds to creating multiple grid levels and their 

interconnection operators. This process is time consuming, but 

has to be performed only once during the solution of an 

individual linear system. The solve-phase consists of vector-

vector and sparse matrix-vector operations. This can be 

performed very fast on GPUs. Furthermore, as long as the 

system matrix remains constant the preconditioner can be 

reused and the setup can be avoided. This is for example the 

case when solving transient linear EQS problems without field 

stress grading material. When more complex materials are 

considered, the system matrix and the Jacobian used in the 

Newton-Raphson scheme will change depending on the local 

electric field distribution. 

For accelerating sparse linear algebra system solutions with 

GPUs the CUSP library [2] is available. It provides sparse 

matrix and vector operations and linear solvers including 

AMG-CG based on smoothed aggregation. However, solving 

large scale problems may exceed the global memory of a 

single GPU, especially when using AMG preconditioners that 

have high memory demands due to multiple grid levels. To 

overcome this limitation a multi-GPU AMG-CG linear solver 

has been presented as an add-on to CUSP [3]. It creates the 

preconditioner on the CPU host computer, where it can be set 

up using available main memory [4]. Afterwards, it is 

distributed across all GPUs. The CUSP add-on involves multi-

GPU vector and matrix classes, SpMV as well as BLAS 

level 1 operators and inter-device communication routines. 

IV.  ACCELERATING AN ELECTRO-QUASISTATIC SOLVER WITH 

MULTIPLE GPUS 

The in-house FEM code MEQSICO is capable of solving large 

nonlinear electro-quasistatic problems [5]. They are 

discretized in space by FEM and in time using an SDIRK3(2) 

time stepping scheme [6]: in each time step the nonlinear 

contributions are reassembled and the system matrix and right-

hand-side vectors are constructed. This is already efficiently 

parallelized using OpenMP. However, this approach can be 

improved to interact efficiently with the GPU-accelerated 

AMG-CG proposed above.  
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 In the nonlinear setting the Jacobian matrix changes and 

thus the preconditioner must be constructed repeatedly. To 

circumvent this problem two different options are applicable: 

either using a simplified Newton scheme, i.e., freezing the 

Jacobian or freezing the preconditioner in the CG algorithm. 

Both approaches result in an increase of the Newton-Raphson 

or CG iterations, respectively. Here we follow the second 

approach. Further optimization is possible by not using the old 

Jacobian, but the one of the current time step for the finest 

level the preconditioner. Thus only the coarser levels are not 

changing and the error introduced is damped in the post-

smooth function on the finest grid. Another possibility is to 

update only the values of the preconditioner but not the 

algebraic grids. This implies that the restriction and 

prolongation operators are not recalculated as the number or 

position of the matrix entries remains unchanged. This reduces 

the Jacobian matrix update routine to a Galerkin product for 

each update. 

V. NUMERICAL EXAMPLE 

As an example the electrical field of a high voltage insulator is 

calculated using 2nd order FE ansatz functions. It is both 

solved with constant materials (linear EQS problem) and 

coated with a microvaristor-layer as an example for a 

nonlinear problem, respectively. It solved on a compute server 

equipped with two Xeon 2560 eight-core CPUs and four 

attached nvidia Tesla K20X GPUs using Cuda 6.5, Thrust 1.8, 

CUSP 0.4 and GCC 4.4.7. Optimization level 2 is turned on. 

The problem dimensions are given in Tab.1. 

This comparison is obviously not fair since hardware costs are 

not regarded but this hardware configuration reflects the 

situation of many computational laboratories. 

TABLE I 

DEGREES OF FREDDOM AND NON-ZERO MATRIX ENTRIES FOR THE NUMERICAL 

EXAMPLES 

Problem 
Degrees of 
Freedom 

Non-Zero Matrix 
Entries 

High-voltage insulator 12e06 320e6 

   
High-voltage insulator with 

nonl. microvaristor-layer 
14e06 387e6 

 

Fig. 1 compares the average computational time for one 

system, i.e., assembly, setup of the linear system and the 

inversion of the linear system. Here the setup consists of 

setting up the right-hand-side and the Jacobian. One can see 

that especially the time consuming solution of the linear 

system is reduced. In this part the speedup is up to 25 times. In 

this case the TrilinosML preconditioner is more effective on 

the host as CUSP's AMG, especially in terms of iteration steps 

(45 compared to 101). However, the multi-GPU CUSP AMG-

CG implementation outperforms both CPU-based options. 

The average amount of time for one iteration of the nonlinear 

solver is shown in Fig. 2. Here the calculation time due to 

matrix assembly is obviously more relevant. Furthermore, the 

Newton-Raphson scheme has to be applied which requires 

more calculations in the setup of the linear system. Even then, 

the linear solver requires the dominating time slice. This part, 

however, is clearly accelerated by the multi-GPU AMG-CG 

linear system solver. When using the multi-GPU code, the 

solution of the linear system reduces from the most time 

consuming part to the least time consuming part. In addition, 

for the given nonlinear example no significant rise of the 

number of iterations can be noticed. 

 
Fig. 1: Calculation time for one time stage in the linear eqs-simulation. 

 
Fig. 2: Calculation time for one time stage in the nonlinear EQS simulation. 

VI. CONCLUSION 

We presented a method for solving nonlinear electro-

quasistatic problems in time domain accelerated by a multi-

GPU linear solver. It is optimized for solving linear problems 

repeatedly with small changes in the system matrix as they 

occur in nonlinear problems. Therefore a specific multi-GPU 

AMG preconditioner was proposed that updates the 

preconditioner without additional calculations. 
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